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Abstract: A modification of the significant structure theory of liquids (SST) is made, in which it is assumed that a change of 
coordination number occurs when a solid melts. On this basis, a "hole" factor (x) and a coordination factor (K) are derived, 
using Lindemann's theory of melting and the molar refractions of solid and liquid. From the calculations of K, it is concluded 
that every solid lattice should, theoretically, contract on melting, and this factor therefore represents a negative term in the vol­
ume change. On the other hand, the calculated x factors represent a positive term, and the net volume change is due to the 
combination of these two opposing factors. It is found that K and x are related by K = Ki/K5 (1 + x)- from which the change 
in volume on melting, AKm, is given by AK171 = KVS (1 + x - 1/K). 

Introduction 
A simple theory of the liquid state which has received con­

siderable attention during the past 2 decades is the "significant 
structure theory" (SST) of Eyring and his collaborators.1-7 

This theory approaches the liquid from the second boundary 
of the liquid state—the solid-liquid boundary. The structural 
model is based on the melting process of the solid, and suggests 
that the liquid inherits, more or less, most of the solid lattice 
structure. This may seem unreasonable, but it works amazingly 
well in predicting the thermodynamic properties of a consid­
erable number of liquids over an extensive range of tempera­
ture and pressure.8'1' Above all, this theory offers a great deal 
of insight into the nature of the liquid state. 

The SST structural model was set up on the basis of the 
following considerations and experimental facts: (a) For a 
normal phase transition from solid to liquid, there is always 
an expansion in volume. (Water is considered an exception.) 
(b) At the triple point the vapor pressure of both solid and 
liquid state is the same. (That is, there are no additional mol­
ecules escaping to the vapor phase upon melting.) (c) X-ray 
diffraction studies12 have shown that the intermolecular 
spacing (time average) among nearest neighbors in a liquid is 
similar to that found in the solid. The long-range order in the 
solid, however, disappears in the liquid, but there still is some 
short-range order remaining, which, upon increasing the 
temperature, gradually disappears. 

Significant Structures1"7 

The basic idea of SST is that those structures which are 
considered to make the major contribution to the thermody­
namic properties of the liquid system are singled out and any 
others are ignored. In this model, three significant structures 
are considered: (a) the solid-like degrees of freedom: possessed 
by molecules having only other molecules as nearest neighbors 
(Their positions are restrained in a manner similar to their 
situation in the solid lattice.); (b) the gas-like degrees of 
freedom: possessed by molecules having a vacancy (or 
vacancies) as nearest neighbors (They will have three-di­
mensional translational degrees of freedom by virtue of their 
ability to move into the neighboring hole(s).); (c) positional 
degeneracy of solid-like molecules: because of the existence 
of molecular size holes, a solid-like molecule will have a posi­
tional degeneracy other than its most stable equilibrium lattice 
position. This positional degeneracy is proportional to the 
number of the neighboring holes which exist, and inversely 
proportional to the energy required to preempt the neighboring 
hole from the competing neighboring molecules. 

Under the assumption that the liquid state will maintain the 

same lattice structure (same unit cell) as that of the solid state, 
letting V\ and K8 represent the molar volume of liquid and solid, 
respectively, the following relations were obtained. The total 
volume of holes = Kh = (K| - Ks), where the Fs are molar 
volumes. Since the holes are of molecular size, the mole frac­
tion of holes should be Kh/Ks = (Ki — Vs)/Vs. According to 
the definitions of solid-like molecules and gas-like molecules, 
the mole fraction of solid-like molecules is K5/ K1, which is also 
the probability of a molecule having only other molecules as 
nearest neighbors. The mole fraction of gas-like holes is V^/ V\ 
= (K1 — K5)/Ki, which also equals the mole fraction of gas-like 
molecules because Kh/Ki is the probability of a molecule 
having vacancies as nearest neighbors. If n^ be the number of 
equilibrium sites accessible to a solid-like molecule in addition 
to its single most stable position, then «h = z(V\ — K5)/Ki 
where z is the coordination number (number of nearest-
neighbor sites). But «h should be proportional to the mole 
fraction of holes, so /it, = n( K1 - Vs)/Vs where n is a propor­
tionality constant. Combining the last two equations to elim­
inate «h, n = zVs/ V\, which means n is the number of nearest 
neighboring sites occupied by molecules (not holes). Then m, 
+ / I = Z . 

The Melting Process 
At the melting point, a certain large number of molecules 

will have a large enough kinetic energy to overcome the local 
potential energy. The result is that they vibrate too vigorously 
and their positions deviate too far from the lattice site, thus 
causing a large number of "empty sites". Eyring and his col­
laborators called this phenomenon" liftoff, and these lifted-off 
molecules are considered as still remaining in the dense phase. 
But because of the existence of these molecules and the large 
number of empty sites (which are considered as holes of mo­
lecular size), the original solid lattice equilibrium is broken. 
The holes, the lifted-off molecules, and the remaining solid-like 
molecules seek a new equilibrium, which is the liquid lattice. 
Eyring and co-workers proposed that this liquid lattice would 
have the same coordination sphere (the same unit cell with the 
same cell volume, and the same number of lattice sites per cell), 
since the intermolecular spacing is approximately the same in 
both states. The lattice sites are then occupied by molecules 
and molecular-size holes. This lattice structure explains the 
short-range order found in a liquid. The introduction of mo­
lecular-size holes into the lattice explains the disappearance 
of the long-range order and the fluidity of the liquid, as well 
as the volume expansion. The net volume expansion upon 
melting is explained by the additional empty sites (the mo­
lecular-size holes) introduced into the system. 
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According to Lindemann,' 3~'5 as the temperature of a solid 
increases, the molecules vibrate more vigorously, and some 
molecules will attain a vibrational amplitude equal to or larger 
than one-half of the intermolecular spacing. At temperatures 
below the melting point, these molecules are responsible for 
diffusion in a solid system. At the melting point, Tm, the 
mole fraction of high-energy molecules is approximately 
e-8mlTm_ Jj1J5 j s t),e maximum fraction for which a solid system 
can still maintain its rigidity, but 6m = hvm/k and vm is given 
by Lindemann as 

and T is given by 

«/m = 2.80X 1012 

MVm
2/3 

1/2 IT d 2 M1/2 

-2.8 X 10» [ ^ 5
 W 

(D 
where M is the molecular weight, Vm is the molar volume of 
solid at the melting point, dm is the corresponding density, and 
vm is the characteristic frequency corresponding to the vibra­
tional amplitude equal to one-half of the lattice spacing in 
the solid at Tm. The heat of fusion, then, is the molar activa­
tion energy which causes melting, when the fraction of high-
energy molecules becomes greater than the limit, which is 

An important point is that the total kinetic energy of the 
solid and liquid is the same at the same temperature. Linde­
mann9 explained the positional instability of these molecules 
as being due to the large vibrational amplitude, which will 
cause an overlap of the vibrations of neighboring molecules and 
a sharing of their E^. As a result of this, one of the two mole­
cules will have enough kinetic energy to leave its lattice site and 
become "free" in the solid. Below the melting point, the 
number of these "free" molecules must be less than the number 
of the empty sites in the solid system, and the migration (dif­
fusion) rate can satisfy the time limit to relax the local insta­
bility. At Tm, the diffusion rate (which is dependent on the 
number of empty sites in the solid) is barely able to relax the 
instability caused by the large number of "free" molecules. As 
more energy is introduced into the solid system, the solid 
molecules redistribute themselves into higher vibrational en­
ergy levels, and thus more "free" molecules are produced so 
rapidly that it requires a faster rate to relax the local instability 
than the diffusion rate. Thus we get additional "lifted off 
molecules for which there are no more empty sites to migrate 
to, and this causes the disruption of the solid lattice structure. 
These additional lifted off molecules will still stay in the dense 
phase because the vapor pressure at Tm (actually, the triple 
point) for both the solid and liquid is almost the same. The 
result is that additional holes are created in the dense phase 
(liquid). 

The problem remaining is what is the mole fraction of the 
"extra" holes which are introduced into the liquid system upon 
melting. If we assume that the vibrational frequency (whose 
corresponding vibrational amplitude, A, equals the intermo­
lecular spacing in the solid) is v\, then we might assume that 
VA = 2 1̂11, and if #A = hv\/k, then EA = 2Em. Molecules 
having vibrational amplitude A can lift off without sharing the 
kinetic energy of their neighbors. But molecules with vibra­
tional frequency between dm and 6A need to share a neighbor's 
kinetic energy to lift off. For these molecules, therefore, a 
factor of V2 should be introduced into the calculation of the 
number of "lifted-off" molecules due to melting of the solid. 
Assume that AHm can raise the solid temperature to T', 
without melting it; then the total number, A^x, of "extra" new 
holes formed in the liquid phase is 

JVex = N0 e-eA/r _|_ I re~em/RT' _ e-eA/r) 
2 

Nn 

T'=Tm + AHm/Cp{m) (3) 

where CP(mj is the heat capacity of the solid at Tm and constant 
pressure. The total number of holes in the liquid state at the 
melting point is therefore 

TVn = - ( e - < W r + e-2flm/7") (4) 

since, before melting, the number of holes («10 5 mole 
fraction)16 is negligible. 

Liquid Structure in the Low-Temperature Region—a 
"Quasi-Lattice Structure" 

The liquid theory for the low-temperature region actually 
is a modified SST. At the triple point the vapor pressure, and 
therefore the number of molecules escaping from the dense 
phase to the vapor phase, is the same for both the solid and 
liquid. This suggests that, at temperatures not too far from the 
melting point, the liquid phase has about the same magnitude 
of intermolecular potentials as does the solid, but a little 
smaller. 

In accord with SST, we still define the significant structures 
in a low-temperature liquid as (a) solid-like degrees of freedom; 
(b) gas-like degrees of freedom; (c) positional degeneracy of 
solid-like molecules. The definition of each term still remains 
the same. The main difference in this theory is that we do not 
assume that the coordination number remains unchanged upon 
melting. The volume change due to the change in coordination 
number will be calculated. We call this factor the coordination 
factor, K. In SST, the volume change is explained solely on the 
basis of the formation of holes upon melting. Here, we take this 
part as the x factor. By using these two factors, we can explain 
the volume change of the solid on melting. 

The Coordination Factor /c 

In the following discussion, we neglect the number of empty 
sites formed in the interior of the solid at very low temperature, 
without a corresponding loss of molecules into the vapor 
phase. 

The total molar volume of a solid crystal can be analyzed 
into two parts: 

Ks = /?m(s) + 6S (5) 

where Rm(s) is the molar refraction, given by 

RM = K ^ ] f (6) 
\nD

2 + 2/s ds 
which is the actual volume occupied by 1 mol of the solid-phase 
molecules. The subscript "s" refers to solid, no is the index of 
refraction, d is the density, M is the molecular weight, and 5S 
is the molar "dead space" of the solid, which is the "frozen in" 
empty space between the lattice points. This empty space does 
not include the solid-state empty lattice sites because empty 
sites can be occupied through diffusion, but 5S cannot be uti­
lized for diffusion. As molecules sublime into the vapor phase, 
the empty sites left behind are considered molecular-sized 
holes. 

Similarly, the molar liquid volume, V\, can also be divided 
into the following three parts: 

Vx = /J1n(I) + 5, + Kh(x ( X ) (7) 

where I7I1(X) represents the volume of "extra" holes formed 
upon melting, and 

= £10 (e-em/r + e-e„/r) ( 2) 
\nD

2 + 2ji d] 
(8) 
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Since Rm is the molar volume actually occupied by mole­
cules17 

Km(S) = Rm(\) = /?m(g) = Rm (9) 

At the melting point, there are high kinetic energy dense-
phase molecules escaping to the vapor phase, and a corre­
sponding number of empty sites left in the dense phase. This 
kind of empty site is actually included in the Rm term. It should 
be noted that Fj1(X) does not include these holes. As a matter 
of fact, the mole fraction of these holes in the solid phase at Tm 
has a numerical value16 of 1O-15-1O-9, which is negligible by 
comparison. 

According to SST, S8 = Si, and therefore V\—Vs= Kh(x). 
In our modified theory, however, we assume that this funda­
mental simple relation of SS theory need be refined. Instead 
we assume that there is a difference, AS, in the dead space of 
the solid lattice and that of the liquid quasi-lattice. On the basis 
of eq 5 and 9 we have 

AKm = (K1 - K8) = (Km(D + 5i + Vm - (Km(S) + S1) 
(10a) 

and therefore 

AKm = Kh(X) + (S1 - S8) + K1n(I) - Km(s) = Kn + AS 
(10b) 

where AKm is the actual change in molar volume on melting, 
AS = 8\ - S8, and Rm(\) = Km(s). This AS term is obviously 
caused by the change in coordination (the mode of packing). 
By rearranging eq 10 one obtains 

Kh(x) = AKm - AS = K1 - (K8 + AS) (11) 

and defining KVS = (K8 + AS), we have 

K = I + A S / K 8 (12) 

Here, K is our coordination factor. Obviously, we see that KVS 
represents the molar volume of a new coordinated solid which 
will have a different amount of "dead space" caused by a dif­
ferent mode of packing. It should be noted that this coordi-
nation/ac/or, n. reveals only the ratio of the number of near­
est-neighbor lattice sites of the two differently packed lattices, 
whereas the coordination number is defined as the number of 
nearest-neighbor molecules, which can be less than the number 
of nearest-neighbor sites, because some of the latter can be 
empty. Thus, K K8 means the molar volume of molecules if they 
are packed in accord with the liquid quasi-lattice. From eq 11 
and 5, we have 

KVS = K8 + S1 - S8 = Rm + S5 + S1 - <5S = Rm + S, (13) 

The evaluation of K from eq 12 or 13 would obviously be 
simple if we had direct information concerning S1, which, 
however, we have not. In the remainder of this paper it will be 
shown how the coordination factor, /c, and the vacancy factor, 
X, can be calculated, and we shall demonstrate how these two 
factors, taken together, can account accurately for the change 
in volume of various solid substances (including water) on 
melting. 

The Vacancy (Hole) Factor, x> and Evaluation of K 

From the previous discussions on the melting process, we 
calculated the concentration of extra holes formed from the 
crossover vibrations of the solid molecules and thereby "lifted 
off as shown in eq 2. The total number of holes is given by eq 
4. Let us define the vacancy factor, \, from eq 4 as 

x = I ( e -9 m / r ' + e-28m/r) ( 1 4 ) 

which is the mole fraction of vacancies in the liquid system at 
Tm. This number of holes should occupy a volume of 

KViX=VfV1-KVt (15) 

from which 

K = K I / K S ( 1 + X ) (16) 

To evaluate x. we need K8, Tm, M, Cp(m), Ai/m, and Linde-
mann's constant L. To evaluate K, we need K1 and x- We have 
already defined 6m as the characteristic temperature at the 
melting point, corresponding to the crossover vibrational fre­
quency j / m . Then 

em = hvm/k = Em/R (17) 

Substituting Lindemann's expression for vm into eq 17 we 
get 

^ m = £ ( ! ) ( r m ) l / 2 ( M r , / 2 ( K s ) " i / 3 

= L'(Tmyn{M)~U\Vs)^l^ (18) 

where L' = L{h/k) is a new constant. In most cases, L = 2.8 
XlO12, so L' should be 1.35 X 102, but for solid noble gases we 
shall adopt Clusius' modified18 L', which is 1.63 X 102. 

In what follows, we list the values used to calculate 6m, T', 
X, and K for several substances. The formulas used for calcu­
lating these quantities follow: for 6m, eq 18; for K, eq 16; for x, 
eq 14; for 7", eq 3. 

The calculated x values are around 10-1, which is much 
larger than 10-5, confirming here that our earlier approxi­
mation16 was reasonable. The appropriate data are shown in 
Table I along with the results of the calculations. 

Discussion of the Calculated Data 

The noble-gas molecules are spherical. As we go from Ar 
to Xe, the x value increases and the 6m value decreases. The 
decrease of 8m means that the shape of the potential well 
changes, and for a fixed frequency the corresponding vibra­
tional amplitude for Xe is larger than those for Kr and Ar. 
Since A//m is also larger for Xe than for Kr and Ar, more 
empty sites are formed in Xe than in the other two. As for N2, 
H2O, and Hg, the difference in x values is caused by the 
magnitude of A//m introduced. The extremely low dm value 
for Hg is characteristic of many metals. 

The K values are striking, snowing that every substance, 
theoretically, when changing from solid to liquid, tends toward 
a more compact packing. To be more exact, they tend to have 
a closer packed hypothetical liquid quasi-lattice structure. 
From our previous discussions of KVS, we see that K actually 
reveals how the molecules make use of the "dead space" in the 
solid which becomes occupiable as quasi-lattice sites in the 
liquid. In other words, K indicates the difference in the fraction 
of volume available for occupation by the fraction of allowed 
lattice sites in a unit cell in the liquid, compared to that in the 
solid. Therefore, the number of lattice sites in a unit cell should 
be inversely proportional to the total volume. Let us define Z1 
as the number of the nearest-neighbor quasi-lattice sites in the 
liquid and z8 as the number of nearest-neighbor lattice sites in 
the solid. Then 

K = KVS/VS = ZS/Z] (19) 

Since a liquid actually does not have a lattice structure, the 
proposed quasi-lattice structure is only a convenient theoretical 
model; consequently, Z1 could be larger than 12. For z\ > zs, 
we have K < 1, meaning that a molecule in the liquid will have 
more nearest-neighbor sites than in the solid, which indicates 
that the liquid is, inherently, more compact. The calculated 
K values, which are less than one for all the substances in Table 
1, imply that the change in the number of nearest-neighbor sites 
represents a negative term in the volume change from solid to 
liquid. On the other hand, x represents a positive term, and the 
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Table I. Physical Data Used and Calculated Values of 7", 6m, x, and K 

7m, K 
M 
Vs, cm3 

V\, cm3 

AKm ,% 
Cp(m), cal/mol-K 
A/ / m , cal/mol 

r, K 
#m> K 
X 
K 

Ar 

83.85 
39.95 
24.98 
28.03 
12.2 
7.81 

10.71 
85.2 
80.65 

0.269 
0.884 

Kr 

116.0 
83.80 
28.41 
34.13 
20.1 

5.05 
27.65 

121.5 
62.76 

0.476 
0.814 

Xe 

161.3 
131.3 

36.50 
42.68 
16.9 
5.04 

56.46 
172.5 
54.21 
0.632 
0.716 

N2 

63.14 
28.01 
29.31 
31.95 

9.00 
11.09 

171.0 
78.6 
71.99 

0.280 
0.852 

H2O 

273.0 
18.02 
19.623 
18.003 

-8 .26 
9.03 

1436.0 
432.0 
213.4 

0.491 
0.614 

Hg 

233.3 
200.6 

14.13 
14.65 
3.67 
6.76 

560.0 
316.1 

65.92 
0.735 
0.597 

net volume change is due to the combination of these two op­
posing factors. The reason that a solid tends to become more 
compact upon melting is that, in the solid phase, the rigid 
lattice structure causes a fraction of the solid volume to be 
"frozen in" as dead space, 5, between the lattice sites. A mol­
ecule can only occupy a lattice site or diffuse among lattice 
sites, but cannot occupy the space between the lattice sites. 

According to the mode of packing and the molecular size, 
8 varies from substance to substance, and can be calculated for 
solids by the following formula if the index of refraction of the 
solid is available: 

5 . - K 1 - Z i 1 1 1 ( S ) - I - " D 2 _ n M 
«D2 + 2/s ds [no2 + 2/s 

3V 
(20) 

For ice, the calculated percentage for 8S is 80.6%. If the re­
fractive index of the solid is not available, we can still calculate 
5S approximately from the refractive index of the liquid or the 
gas by using the relationship of eq 9. The estimated percentages 
for <5S for Ar, N2, and Hg are 72.9, 85.8, and 64.5%, respec­
tively. 

No matter how compactly packed are the molecules, there 
will always exist a certain amount of dead space. Upon melting, 
the rigidity of the solid lattice disappears, and the molecules 
tend to utilize all the space possible, so that the dead space 
tends toward a minimum. 

The notion that K could become less than one upon melting 
might previously have been considered reasonable only for 
those few substances which are known to contract on melting. 
But the K values in Table I indicate that even the simplest noble 
gas solid will, theoretically, contract upon melting, as should 
H-bonded H2O, and metallic Hg. 

Confirmation of the Validity of the Calculated x and K 
Values 

If we can use these calculated values of x and K to predict 
some of the known physical properties, we can verify the va­
lidity of this approach. What follows is an attempt at such 
verification. 

The average number of nearest neighbors in several liquids 
is known by X-ray diffraction. From the nature of x and /c, we 
see that these might be used to predict the average number of 
nearest neighbors for liquids at their melting point, given their 
number in the solid state. We choose this property to verify the 
argument because the derivations of x and « are not related 
in any way to the X-ray diffraction data. This choice will, 
therefore, provide an independent confirmation. 

Z] and zs represent the number of nearest-neighbor "quasi-
lattice sites" in the liquid, and actual lattice sites in the solid, 
and we let x\ and xs represent the number of nearest neighbors 
in the liquid and in the solid, respectively. These are called the 
coordination numbers, which are therefore the number of 
nearest neighbor sites occupied by molecules in the two phases. 
X-ray diffraction data will give us information about x but not 
z. 

Table II. zs and Calculated Values for z\ and x\ Compared with 
Experimental x\ Values 

zs or x s 

Zl 
x\ (calcd) 
x\ (exptl) 

Ar 

12 
13.6 
10.7 

- 1 0 . 5 - 10.8 

Kr 

12 
14.7 
10.0 

-10 .0 

Xe 

12 
16.7 
10.3 

-10 .2 

N2 

12 
14.1 
11.0 
a 

H2O 

4 
6.51 
4.36 

- 4 . 4 

Hg 

6 
10.0 
5.79 
a 

" Experimental value not available. 

As noted previously, the number of empty sites in the solid 
is of the order of 10-5-1O-9 mol.16 To a first approximation, 
we assume that all the lattice sites are occupied in the solid 
state, and 

2"s ^ s 

But since K = zs/zi (eq 19), it follows that 

Z1 = Z s /K 

(21) 

(22) 

The total number of molecules in the liquid is the same as that 
in the solid, but the liquid contains, in addition, x mol of empty 
sites. Therefore, the total number of moles of lattice sites in the 
liquid is (1 + x), whereas in the solid it is one. Consequently, 
the probability of a site being occupied by a molecule in the 
liquid is (1 + x ) _ l ; hence 

X] 
(1+X) 

Substituting eq 21 and 22 into (23) produces 

X] = • 

(23) 

(24) 
t ( l + X ) 

The calculated z\ and X] and experimental x\ values are listed 
in Table II. 

We see from Table II that the calculated X] compares quite 
favorably with the experimental value for all substances con­
sidered. We should point out that all the experimental X] values 
were obtained at temperatures higher than the melting point, 
and we should perhaps take into consideration the change of 
X] with increasing temperature. The agreement with X-ray 
diffraction data would indicate that our basis for the derivation 
of x and K is correct. 

Change of Volume on Melting of a Solid 

The percent change of volume on melting, 102A Vm, can be 
calculated by rearrangement of eq 16 to give 

1 
AKm = K K s ( l + x - l A ) = V] 1 -

Kd +X) 
(25a) 

and 

102AF/KS= 102/c(l + x - 1/K) (25b) 

Since the V formula is derived and calculated by using the 
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experimental value of Vs and V\, the predicted volume ex­
pansion (or contraction), AKm, on melting has to fit the ex­
perimental values exactly (Table I, AVm). 

In part 2 of this theory we shall give a new and complete 
partition function for the liquid state and compare it to the SST 
partition function; discuss the potential function for liquids 
under extreme pressures (>5 X 103 atm), at constant tem­
perature,19 and at constant high pressure;20 and derive equa­
tions for the kinetic21 and potential energy for molecules in a 
liquid surface. 
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zenediazonium fluoroborate (2a) and phenylhydrazine (3a) 
in acetonitrile solution which gives the products shown in eq 
2. 

CH3CN 

PhN2
+BF4- + H2NNHPh ^PhH + PhNHNHPh 

2a 3a 54% 5.8% 

+ PhPh + PhN3 + PhNH2 (2) 
1.7% 6.7% 7.7% 

Having observed that hydrazines can reduce diazonium 
salts, we have carried out a number of experiments designed 
to elucidate the mechanism of this interesting reaction. In 
many cases, reactions leading to the reduction of diazonium 
ions involve radical pairs and generate products showing nu­
clear polarization (CIDNP)5 when carried out in the probe of 
an NMR spectrometer.6 Accordingly, we have carried out the 
reaction shown in eq 2 in the probe of 13C and 1H NMR 
spectrometers. These experiments resulted in the observation 
of strong emissions (E) for the protons and carbon-13 atoms 
of benzene. In addition, the 13C spectrum showed two en­
hanced absorptions (A) at 5 130.9 and 140.9 ppm. It was found 
that these enhanced absorptions corresponded to Ci and C3 
of hydrazobenzene to which an excess of HBF4 had been 
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Abstract: Reaction of acetonitrile solutions of aryldiazonium fluoroborates with arylhydrazines leads to reduction of the diazo­
nium ion. This reaction generates arenes and protonated hydrazobenzenes showing nuclear polarization (CIDNP). An analysis 
of the nuclear polarizations leads to the conclusion that the reaction proceeds via an initial electron transfer from hydrazine 
to the diazonium ion to generate a radical pair consisting of a diazenium radical, 5, and an aryldiazenyl radical, 9. Loss of ni­
trogen from 9 produces an aryl radical paired with 5. This radical pair is responsible for nuclear polarization. When the reduc­
ing agent is phenylhydrazine, radical 5 is further oxidized to generate polarized benzene. Reaction of p-nitrobenzenediazon-
ium fluoroborate with p-nitrophenylhydrazine produces an immediate precipitate which has been characterized as 1 (4-bis(p-
nitrophenyl)tetrazene (10). 
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